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In this paper we investigate the long-wavelength approximations of the equations 
governing the motion of an inviscid liquid jet. Using a formal perturbation expansion 
it will be shown that the one-dimensional equations presented by Lee (1974) are 
inconsistent.- The inconsistency arises from the fact that terms which have been 
retained in the boundary conditions should have been rejected in view of the 
approximations made in the momentum equations. With the correct equations a 
number of anomalies between Lee’s model and other models are eliminated. An 
explicit periodic solution to the nonlinear evolution equations we have derived is 
presented. However, it turns out that the wavenumbers for which this solution is valid 
lie outside the range in which the long-wavelength approximations are applicable. In 
addition we present numerical solutions to the nonlinear equations we have derived. In 
the unstable regime we find that, as disturbances grow, the characteristic axial 
lengthscales of the major features are typically of the order of the radius of the jet. This 
casts some doubt on the validity of the long-wavelength approximations in the study 
of nonlinear liquid jet dynamics. 

1. Introduction 
Ever since the pioneering work of Rayleigh more than one hundred years ago, there 

has been a continuous interest in the dynamics of liquid jets and finite liquid columns. 
In the past decades this interest intensified due to the importance of liquid jets in 
various industrial applications (such as ink-jet printers) and the occurrence of liquid 
columns (in the form of a bridge between two solid end plates) in material science 
processes. The linear stability analysis of an inviscid jet of infinite length was presented 
by Rayleigh (1879). While that work provides insight into fundamental processes 
involved in the dynamics of jets, many aspects of importance such as the breaking 
process, drop formation and growth rate of disturbances are inherently nonlinear and 
as a result outside the reach of Rayleigh’s analysis. 

Attempts to understand the dynamics of a breaking jet have involved both 
experimental and theoretical studies. The experimental investigations range from 
studies of growth rates of disturbances and effects of viscosity by Donnelly & 
Glaberson (1966) and Goedde & Yuen (1970) to detailed investigations into the 
formation of drops by Pimbley & Lee (1977) and Vassallo & Ashgriz (1991). The 
theoretical investigations concentrate mainly on a perturbation expansion approach. 
Yuen (1968), Wang (1968), Nayfeh (1970) and Lafrance (1975) all used perturbation 
expansions to varying orders in the perturbation parameter to study finite-amplitude 
effects. 

Given the fact that the problem of a breaking liquid jet is highly nonlinear involving 
large deformations of the free surface, it is natural to search for approximations of the 
governing equations which reduce the difficulty of the problem. The relative dimensions 
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of the liquid jet naturally lead to so-called one-dimensional models to study jets and 
liquid columns. There are two fundamentally different approaches leading to a one- 
dimensional model. The first is a classical approach which, in essence, uses the 
‘ shallow-water ’ approximations applied to the Euler equations in cylindrical 
coordinates, Basically one assumes that the radal momentum flux is small compared 
with the axial momentum flux which uncouples the radial momentum equation from 
the axial momentum equation. The second approach emanates from the theory that is 
based on the concept of a one-dimensional continuum, called a Cosserat continuum. 
Here one starts at the outset with a one-dimensional continuum and derives the 
equations and boundary conditions governing the deformations of the continuum 
using principles of invariance and constitutive assumptions. For details regarding this 
approach we refer to Green, Laws & Naghdi (1974u), Green, Naghdi & Wenner 
(1974b) and Green (1976). 

Weber (1931) appears to have been the first who applied a shallow-water-type 
approximation to the equations governing the dynamics of a liquid jet. Based on the 
assumption that the pressure is constant in the radial direction, Weber derived 
equations which govern the motion of a slightly perturbed liquid jet. Using the same 
assumption Lee (1 974) presents the equations governing the nonlinear behaviour of 
a jet. Subsequently Lee’s model was employed in a number of studies concerning the 
dynamics of liquid jets (e.g. Pimbley 1976, Pimbley & Lee 1977, Torpey 1989). This 
model has also been used extensively in studies on the dynamics of finite liquid 
columns. We refer to, for example, Meseguer (1983) and Sanz (1985). 

Neither Weber (1931) nor Lee (1974) provided a formal derivation of the equations 
they presented. Crucial is their ad hoc assumption of constant pressure in a radial cross- 
section of the jet. Although this assumption can be justified for a liquid jet, great care 
has to be taken regarding the exact nature of the approximation in the momentum 
equations in relation to the boundary conditions. Namely, in principle one should be 
able to derive the approximate equations by means of a formal perturbation expansion 
of the Euler equations with the ratio of the radius and the axial lengthscale as the 
perturbation parameter. Consistency would require all terms up to a specified order in 
the perturbation parameter to be retained in the momentum equations and the 
boundary conditions. However, it turns out that in the equations presented by Weber 
(1931) and Lee (1974) terms of a certain order were neglected in the radial momentum 
equation while higher-order terms in the boundary conditions were retained. The 
inconsistency becomes apparent when one compares the model of Lee and Weber with 
the Cosserat model in the linear (inviscid) limit. There is no reason to believe that these 
models should yield different results, as is the case, in this limit. Starting from a velocity 
potential formulation for the unsteady liquid jet, Moiseev (1965) did present a formal 
derivation of the approximate equations in the long-wavelength limit. However, his 
expression for the curvature is erroneous and no detailed discussion of results is given. 

In 92 of this paper we show how the equations in the long-wavelength approximation 
can be derived by means of a formal perturbation expansion. In $ 3  we consider the 
linearized equations for the case of a liquid jet. It is shown that the consistent 
approximation of the governing equations brings the one-dimensional theory based on 
the Euler equations in line with the linear Cosserat theory. Periodic solutions of the 
nonlinear equations we have derived in $2 will be studied in $4. It will be shown how 
explicit analytical expressions for nonlinear long-wavelength disturbances on a liquid 
jet may be obtained. In $ 5  we show how numerical solutions to the equations derived 
in $2 can be obtained. The development of the jet in the unstable regime will be studied 
numerically in $6. Finally, we present our conclusions in $7. 
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2. Governing equations 
Let us consider a liquid jet consisting of an inviscid, incompressible liquid. We 

assume that the jet is axisymmetric initially and that subsequent perturbations of the 
jet are axisymmetric so that there is no azimuthal dependence of the variables. The 
momentum equations are then given by 

in which primes indicate dimensional quantities, u’ and w’ denoting the radial and axial 
components of the velocity respectively, p‘ the pressure and p the density of the liquid. 
Note that body forces have been neglected. The incompressibility and irrotationality 
conditions yield 

i a  awl 
r’ ar’ az --(r’u’)+7 = 0, 

awl au/ 
32’ ar’ 

= 0. 

On the capillary surface r‘ = R+f’(z’, t’) we have the kinematic condition 

(3)  

(4) 

in whichf’(z’, t’) denotes the deviation of the surface from the undisturbed cylindrical 
surface of radius R.  The dynamic condition which relates the pressure to the curvature 
of the capillary interface is given by 

in which c notes the coefficient of surface tension. Finally there are two symmetry 
conditions on the symmetry axis, namely 

(7) 
awt u’(r’ = 0, z’, t’) = - (r’ = 0, z’, t’) = 0. 
ar’ 

In order to derive the dimensionless equations to be approximated by means of a 
perturbation expansion we have to consider various characteristic scales of the 
dimensional quantities. Let R denote a typical radial lengthscale and let A be a 
characteristic amplitude of free surface deformations. We define e = A / R  and assume 
e 4 1. A typical pressure scale is given by cr/R and a characteristic timescale is found 
by considering the dispersion relation for a liquid jet with radius R (see e.g. Lamb 
1932), namely 

in which Zo,I, are modified Bessel functions of the first kind and k denotes the 
wavenumber of disturbances. Let T, = @R3/44 be some typical timescale for capillary- 
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related effects, and define a dimensionless wavenumber via S = kR, with 6 4 1 
corresponding to the long-wavelength limit. In this limit we obtain from (8) 

1 
lwI2 N - k2R2 + O(k4R4). 

It follows that a typical timescale for long-wavelength disturbances is given by 
T = &/a. Finally, a typical axial lengthscale is given by the inverse of the dimensional 
wavenumber, i.e. k-’ = 6 / R .  The dimensional quantities can now be made dim- 
ensionless via 

T,2 

r’ = Rr, 
Z’ = (R /&)z ,  t’ = (&/a) t, 

f’(z’, t’) = A m ,  0, p’(r’, z’, t’) = (a /R)p ( r ,  z ,  0,  
u’(r’, z’, t’) = ( A / T )  u(r, z ,  t )  = SV,, u(r, z ,  t),  w’(r’, z’, t’) = U,, w(r, z ,  t) ,  

where U, = A / & .  The axial velocity scale follows from continuity considerations. We 
point out that, although the scaling introduced here is special for the problem under 
consideration, a similar scaling is standard in the shallow-water theory; see, for 
example, Whitham (1974). 

Let us first consider the irrotationality condition (4). Substituting for the dimensional 
quantities yields 

Since we have assumed S to be small it follows that 
w(r, z ,  t )  = W(z, t )  + O(S2), (10) 

where we define W(z, t) = w(r = 0, z ,  t )  for convenience. The continuity equation (3) 
reads 

on using (10). In the above and all subsequent equations a subscript denotes a partial 
derivative with respect to the particular subscript. Upon integrating the above equation 
we obtain 

u(r,z , t )  = -QW,+O(P). (1 1) 
We can now substitute (1 1) into (9) and integrate with respect to r to obtain 

(12) 
which, on substituting into the continuity equation yields after integration 

(1 3) 
The procedure outlined above can be repeated to yield u(r, z ,  t )  and w(r, z ,  t )  to any 
desired order in 6. Note that (12) and (13) satisfy the symmetry conditions (7). 

Let us next consider the radial momentum equation (1). Substituting for the 
dimensional variables yields 

w(r,z, t )  = W(z, t)-iS2r2W,,+O(64), 

u(r, z ,  r) = +r W, + W,,, + O(64). 

- = -Ed2 -+Eu-+Ew- aP 
ar 

Using (12) and (13) and retaining only the terms up to O(eS2) we can integrate the 
above equation to give 

(14) 

(t : ::). 
p(r ,  z, t )  = B(z, t )  + sS2ar2 W,, + O(c2S2, &), 
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in which @(z, t )  is an integration constant. In order to determine the integration 
constant we consider the dynamic boundary condition (6) .  Upon substituting for the 
dimensional variables we obtain 

Since terms of O(s2S2) were neglected in the radial momentum equation, consistency 
requires the same to be done in the boundary conditions so that (15) reduces to 

The value of the integration constant in (14) follows from the boundary condition for 
the pressure as given by (16). Hence 

eSzf,, + $d’2(r2 - 1) W,, + 0(c2S2, es4). (17) 
1 

p(r ,  z ,  t )  = -- 
1 +€f 

At this stage it is important to compare our results with the results of Lee (1974). Lee 
took the pressure to be constant in the radial direction, which effectively means that 
terms of O(eS2) were neglected in the radial momentum equation. However, terms of 
O(eS2) and O(e2S2) were retained in the dynamic boundary condition, namely all terms 
in (15) were retained. It is hard to see how this can be justified in view of the 
perturbation expansion presented here. 

Let us next consider the axial momentum equation. Substituting for the dimensional 
variables vields 

Using (12), (1 3) and (17) to eliminate w(r, z, t).  u(r, z, t )  and p(r,  z, t )  respectively from 
the above equation, yields 

€y++2wq-+€S2w,,t = - Ef, + €S2fizz + O(E262, €64). (19) (1 +€jy 
Finally, from the kinematic boundary condition in dimensionless form, namely 

af f 
a t  aZ = U - € W - ,  

together with (12) and (13) for u(r, z ,  t )  and w(r,z, t )  we obtain the continuity relation 

(20) 
Equations (19) and (20) constitute the equivalent of the Boussinesq equations 

governing long-wavelength disturbances on an axially symmetric liquid jet. It is 
convenient to rewrite (19) and (20) in terms of the mean axial velocity defined by 

€f, = -a( 1 + €f) €w, - €2 W~+&€62w,,, + O(E262, €#). 

1 

Substituting for w(r, z ,  t )  as defined by (12) in the above expression yields 

from which we obtain 
*(z, t )  = W(z, t )  -iPw,, + O(S2S2, EP), 

W ( Z ,  t )  = w(z, t )  ++32w,, + O(E262, €#). 
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On substituting for W(z, t )  as given by (21) and using the notation W(z, t )  = sw(z, t )  
and F(z,  t )  = 1 +~f(z,  t )  we find that (19) and (20) can be written like 

S2 
8 (22) %+WK--Kzt = -q, 

(F2)”)t(PW)2 = 0. 

P ( z , t )  = 3-39+92-823z ,  
The pressure term P ( z ,  t )  in (22) is given by 

which is an approximation of the capillary pressure as given by (1 5 )  in which only terms 
up to order e2 and sS2 are included. This approximation is consistent with all 
approximations made to derive (22) and (23). Namely, consistency of the perturbation 
expansion effectively requires S2 - E since the terms of order €64 and e2S2 were assumed 
to be of the same order of magnitude in our expansion. Equations (22), (23) are 
therefore consistent approximations of the Euler equations up to order s3. 

Before we proceed with a more detailed discussion let us compare the above 
equations with the equations presented by Lee (1974). As expected, (23) remains 
unaltered since it describes the conservation of mass. The left-hand side of (22) differs 
from Lee’s equation in that the latter does not include the O(P)  term. The right-hand 
side of (22) differs significantly from the equation presented by Lee because, as 
remarked before, Lee included all the terms in the dynamic boundary condition. 

3. Linear analysis 
The linear equations are obtained by neglecting all terms of order c2 in (22), (23). We 

obtain 

2f, + w2 = 0. (25) 
Let us assume wave-like disturbances with w(z, t )  andf(z, t )  of the usual type ei(k’z’+w’t’), 
or in dimensionless form ei(z+wt/6) using the time- and lengthscales defined in the 
previous section. Substituting for rn and f we obtain the dispersion relation 

We point out that dispersion relation (26) is identical to that obtained by Body (1978) 
using the linear Cosserat equations. The improved accuracy of this dispersion relation 
compared with that obtained by means of Lee’s model is pointed out in Bogy’s paper. 

Retaining only terms of order S2 in (26) we obtain 
w 2  = - _  + 0(64), 

which is indeed the long-wavelength approximation of dispersion relation (8). We note 
that in this limit (which is formally the limit of Lee’s 1974 approximation) all 
disturbances grow exponentially in time, the growth rate increasing monotonically 
with increasing wavenumber. The highly unstable behaviour of a jet emanating from 
a nozzle as predicted by Lee’s model must be attributed to this fact. This notable 
shortcoming of Lee’s model is remedied when a consistent approximation of the 
governing equations is made. Namely, the jet-nozzle problem in which we take (24) and 
(25) as the governing equations yields the linearized Cosserat problem which was 
shown by Body (1978) to have stability properties similar to those derived by Keller, 
Rubinow & Tu (1973). 
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Retaining all terms up to and including order s‘ we find that (26) reduces to 

w2 = -;6~(1-~62)+o(P). (27) 
A comparison with (8) shows that our analysis is consistent with the notion that the 
Boussinesq approximation has the effect of including the second term in the long- 
wavelength approximation of the dispersion relation. It is not necessary to proceed 
with a detailed discussion of the linear equations (24), (25) since they are equivalent to 
the linearized equations which follow from the Cosserat model. For a discussion of the 
Cosserat model and the discrepancies between this model and Lee’s model we refer to 
the review paper by Bogy (1979). 

4. Nonlinear periodic solutions 
Let us next investigate periodic solutions to the problem defined by (22) and (23). To 

that end we consider solutions of the form w = ~(8, f = f ( t ; )  where t; = z-ct ,  c 
denoting the phase speed of the periodic disturbance. Equations (22) and (23) can then 
be written like 

(28) 
(29) 

- cw’ +$(ma)’ +yew"' -f’ + E( f2 ) ’  - ,y = 0, 
- c(( 1 + €fy)’ + (( 1 + E f ) Z  07)’ = 0, 

where the prime denotes a derivative with respect to 6. Note that (29) may be integrated 
directly. Consistency of the resulting expression in the limit E + O  determines the 
integration constant, hence to second order in E we obtain 

€ w / C  = 2 ~ f -  32j-2 + 0 ( ~ 3 ) .  

- CW -f+ ;swz + E f  + p C w ’ ’  - fYy + A = 0, 

(30) 
Equation (28) may be integrated once to yield 

in which A is an integration constant. Using (30) to eliminate w and employing the 
identity f” = F V 2 ) / d f  one can show that the above equation reduces to 

f’2 = qf) + O(E, P), (31) 

8 4  1 + 5 2 )  4( 1 + 2c2) in which Ucf) = af3-/If + A  f+ B, 01 = 3sy4 - 2) ’ = P(4 - 2) 

We assume that U(f)  has three real roots. The unknowns A ,  Bin (31) are determined 
by specifying the height of the unperturbed free surface and the amplitude of the free 
surface displacements. By definition, the height of the unperturbed free surface is given 
byf= 0 while the amplitude of the disturbance is equal t o f=  1 .  These choices define 
A = -01 and B = /3. Hence (31) becomes 

f’2 = %(f) = (l-f2)(p-a.. (32) 
The general solution of (32) can be expressed readily in terms of Jacobian elliptic 

functions. With the substitutionf= cosq5 we find (cf. Abramowitz & Stegun 1970), 

f(9 = 2cd2(H~+/I);<Im)-1, 2u m=- 
a+P’ (33) 

A complete description of the periodic problem requires a relation between the 
parameters 6 and E and the phase speed c - essentially the dispersion relation which 
includes finite-amplitude effects. This dispersion relation follows from the definition of 
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the wavelength. Namely, we know that f ( Q  undergoes a periodic motion between the 
zeros f = - 1 andf= 1 of Urn .  Hence, the dimensionless wavelength, equal to 27c by 
virtue of the choice of lengthscales, is given by 

in which K(m) is the complete elliptic integral. 
As a test of our analysis so far, let us consider the linear limit of (33) and (34). In 

the linear limit we take e + O  so that cr+O and hence m+O. In this limit we have 
cd (u 1 m) + cos u and K(m) +in so that equations (33) and (34) reduce to 

Equations (35) show that in the linear limit we obtain the desired sinusoidal deflection 
of the free surface as studied in $3. The relation @ = 1 is, in fact, an alternative 
formulation of the dispersion relation (26). 

It is well-known that in the linear limit the wavenumber 6 = 1 marks the transitions 
from the regime in which stable periodic solutions exist (for 6 > 1) to the unstable 
regime (for S < 1). Nayfeh (1970) has shown that the stability boundary changes to 
6 = 1 +:e2 when finite-amplitude effects are incorporated. It is interesting to investigate 
what the stability boundary is as predicted by our model. We have shown that periodic 
solutions exist when c2 > 0. In the linear limit the boundary between stable periodic 
solutions and unstable exponential growth corresponds to the value c = 0. It seems 
reasonable to assume that the value c = 0 also marks the stability boundary in the 
nonlinear case. Taking c = 0 we obtain a = $e and /3 = 1 so that m = 4s/(26+3). 
Employing the approximation 

and (34), yields the critical wavenumber 

This result is in disagreement, qualitatively and quantitively, with the stability limit 
derived by Nayfeh (1970). This should not be surprising since, as was pointed out by 
Nayfeh, the timescale near the stability limit is such that our scaling introduced in $2 
ceases to be valid. In addition we note that near the stability boundary 6 - 0(1) 
whereas our analysis was based on the assumption that S 6 1. The range of 
wavenumbers for which the foregoing analysis holds is therefore outside the range of 
the perturbation expansion. 

Further evidence about the questionable validity of the periodic solutions derived in 
this section follows from the dispersion relation (34). Employing the approximation of 
K(m) as stated above, one can show that (34) reduces to 

f ( Q  = cosp;, @ = 1. (35) 

K(m) = in( 1 + +m +&mZ) + O(mS), 

6 = 1 -#. 

3a2 B= l+y+O(y2), y = - <  1. 
4n2 8P2 

The dispersion relation (26) can now be used to express y in terms of 6. Solving (36) 
for c2 by using the definition of p we obtain 

We observe that incorporating finite-amplitude effects leads to second-order variations 
in the dispersion relation, which is in agreement with the work by Wang (1968) and 
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Nayfeh (1970). However, the term containing c2 in (37) is positive for 6 > 1. This 
implies that the phase speed of the propagating waves increases with increasing 
amplitude, which disagrees with the findings of Wang and Nayfeh. 

5. Nonlinear aperiodic solutions : numerical treatment 
In the case where c2 < 0, the parameter 6 = z - ct introduced in the previous section 

becomes complex so that (32) becomes a complex equation. While the solution to this 
equation can be obtained readily in terms of elliptic functions, the physical significance 
of the solution is unclear. The nonlinear behaviour of a jet in the unstable regime is, 
however, a very interesting problem. The coupled set of nonlinear partial differential 
equations (22) and (23) will therefore be solved numerically in order to study the 
nonlinear long-wavelength behaviour of a jet. 

We assume that the jet is ejected from an orifice at a certain speed and that we move 
at this speed with the jet. We assume, in addition, that a periodic, long-wavelength 
disturbance is generated in the liquid jet. In our frame of reference the disturbance will 
then appear as a stationary wave with a growing amplitude. Owing to the periodic 
nature of the disturbance, the boundary conditions are as follows: 

(38) 
In addition we have to specify some initial conditions. We assume that the jet is initially 
cylindrical but the initial velocity is assumed to be some nonzero periodic function of 

W(0, t )  = W(271, t )  = 0, q o ,  t)  = 35(27c, t)  = 0. 

z ,  namely 
9 ( z ,  0) = 1, W(z, 0) = WO(Z).  (39) 

Note that continuity implies that q ( z ,  0) = -iWo(z). 
Equations (22) and (23) will be discretized using a finite-element approach. To that 

end we require the variational formulation of these equations, which reads as follows. 
Find W , F ~ [ 0 , 2 z ]  such that for all @, U~[O,27c] the following equations are 

satisfied : 

[@%+ @WK +gSZ@, K ,  - @z P] dz = 0, 

The test function @ is chosen such that @(z)l,=,, 24 = 0 in accordance with the boundary 
conditions for W and we choose !P such that d!P/dzl,=,, 2x = 0 in view of the boundary 
conditions imposed on 9. 

A discrete set of equations is obtained by dividing the domain [0,2z] up into 
elements and approximating W and 9 via W = Cj wj(t) @,, 9 = Cc,&(t) U,. Here, 
Qi(z) and Y,(z) denote the usual finite-element basis functions with small support. In 
order to determine which basis functions are to be used we note that 9 contains 
second-order derivatives so that the requirement @jz P E LJO, 2x1 indicates that basis 
functions with continuous first derivatives across element boundaries are required. To 
satisfy this requirement we employ the cubic Hermite interpolating functions as the 
basis functions Qj and !P,: at each node both the function values (9, W )  and its spatial 
derivatives (%,%) are treated as unknowns, cf. Strang & Fix (1973). The discrete 
equivalent of (22) and (23) can now be written in matrix-vector form: 

(41) I ( M + S 2 / 8 S ) ~ + G ( w ) ~ - r C f )  = 0, 
Mf+ GCf) w+;G(w)f= 0, 
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FIGURE 1 ( e c ) .  For caption see facing page. 

in which a dot denotes a time derivative and the components of the matrices are given 
by 

Note that we no longer distinguish between the basis functions Qj and Y.. Without 
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z 

FIGW 1. The evolution of the free surface of a jet for: (a) 6 = 0.1, r = 0.1(0.1)0.5; (b) 6 = 0.3, 
t=0.1(0.1)0.6; (c) S=O.5, t=0.15(0.15)0.75; (d) 6=0.7,  t=0.15(0.15)0.9 and (e) S=O.9 ,  
t = 0.2(0.2) 1.0. 

elaborating, it is important to note that the boundary conditions are periodic which 
leads to some changes in the matrices in (41). 

The integration routine chosen to advance the solution of the initial-value problem 
(41) in time is a fourth-order Runge-Kutta scheme. Two systems of equations are to 
be solved repeatedly during the integration procedure. We point out that this can be 
done efficiently since the matrices M and S are constant throughout the integration 
procedure. Hence the L U-decomposition of these constant matrices needs to be 
calculated only once. 

6.  Results and discussion 
All the numerical results presented in this section have been obtained by dividing the 

domain up into 100 elements of equal size. The time step in the Runge-Kutta scheme 
was taken to be At = 0.001 25. 

Let us consider the evolution of the free surface of the liquid jet for a given initial 
disturbance. We take the initial velocity distribution to be of the form 

%(z) = c0sin(z) 

with E,, = -0.1. In figure 1 we show the free surface of the liquid jet for the 
wavenumbers 6 = 0.1, 0.3, 0.5, 0.7 and 0.9. For each wavenumber the free-surface 



R. M .  S.  M .  Schulkes 

0 
w 

-1.oL 

I .a 

w 

- 1 s  

FIGURE 2(u-c). For caption see facing page. 

shape is shown for a number of different times separated by equal time intervals. The 
corresponding axial velocity W(z, t )  is shown in figure 2(a-e). In the plots the z-axis 
has been scaled with the wavelength via i = z/27c. 

Consider the case S = 0.1. We observe that, as time increases, the amplitudes of the 
swells at I?= 0,l  increase with increasing rates. In contrast we observe that the 
amplitude at the point halfway between the swells does not increase significantly. This 
suggests that the neck will not form halfway between the swells. Indeed, if we allow the 
amplitudes to increase further we find that a neck starts to develop approximately one 
tenth of a wavelength away from the maximum amplitude (the neck forms near 
i = 0.1 and i = 0.9). Further evidence that the neck does not form halfway between the 
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-1 .oL 

FIGURE 2.  Plots of the axial velocity for: (a) S = 0.1, t = 0.1(0.1)0.5; (b) S = 0.3, t = 0.1(0.1)0.6; 
(c)S=O.S, t=0.15(0.15)0.75;(d) S=O.7, t=0.15(0.15)0.9and(c)S=0.9, t=0.2(0.2)1.0. 

wells is given by the axial velocity. Namely, a necessary requirement for necking to 
occur is a strongly divergent flow. The plot of the axial velocity for 6 = 0.1 (figure 2 4  
shows that at f = 0.5 the flow is weakly divergent. As time increases we observe that 
a region with a strongly divergent flow starts to develop near i = 0.1 and i = 0.9. 

For 6 = 0.3 (figures 1 b, 2 b) we observe a similar situation as for 6 = 0.1. However, 
the region of increasing amplitudes is somewhat wider for 6 = 0.3 than it was for 
6 = 0.1. We also observe that a necking region starts to develop about one fifth of a 
wavelength away from the maximum amplitude. The plot of the axial velocity shows 
that this is indeed the region in which the flow becomes increasingly divergent for 
increasing time. 

The cases 6 = 0.5 and 6 = 0.7 presented in figures 1 (c), 2(c) and 1 (d),  2(d)  
respectively show that as the wavenumber increases, the width of the swell increases 
while the region between the swells narrows. In addition we observe that the 
amplitudes in the necking region increase almost as fast as the amplitudes of the swells. 
For 6 = 0.5 we find that a neck develops a quarter of a wavelength away from the 
maximum amplitudes while for 6 = 0.7 the neck develops at about one third of a 
wavelength away from the maxima. We observe that for 6 = 0.7 the flow at the point 
z" = 0.5 becomes increasingly divergent for increasing time. Note that this is not the 
case for 6 = 0.5. 

Finally consider the case 6 = 0.9 (figures 1 e, 2e).  We observe that the amplitude of 
the disturbance halfway between the swells increases faster than the amplitudes at the 
swells. Also observe that the flow becomes increasingly divergent near z" = 0.5 as time 
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FIGURE 3. Evolution of the interface and the axial velocity for the case 6 = 0.9 
at times t = l.l(O.05) 1.25. 

increases, suggesting that the bifurcation point will be situated halfway between the 
swells. 

The foregoing results are important in relation to the formation of satellite drops. 
We have seen that for 6 < 0.7 necking will not occur halfway between two swells but 
rather at some intermediate points. This implies that for that for 6 < 0.7 satellite 
droplets will always occur. We have also seen that, as 6 decreases, a long flat region 
develops between the swells, the length of this region increasing for decreasing 6. This 
implies that the volume of the satellite drops increases with decreasing wavenumber 6. 
These results are in general agreement with those obtained by Lafrance (1975). 
Employing a perturbation expansion to third order and allowing the amplitudes to 
grow to one jet radius, he showed that satellite droplets are always present when the 
wavenumber of the disturbance is less than 6 = 0.8. A study by Shokoohi & Elrod 
(1987) of bifurcating liquid jets based on the numerical solution of the complete set of 
Navier-Stokes equations indicates, however, that satellite droplets will occur for any 
wavenumber 6 -= 1. It is interesting that our one-dimensional model also predicts the 
formation of satellite droplets for 6 > 0.8. In figure 3 we show the evolution of the 
capillary interface close to the bifurcation point for the case 6 = 0.9. We note that while 
the necking region has a well-defined minimum for t = 1.  I the necking region becomes 
flat as time increases and assumes the characteristic shape observed for the smaller 
wavenumbers. 

Some caution is required when we consider numerical results in which the amplitude 
of the disturbance is close to the initial radius of the jet. Given that in the 
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approximations leading to (22) and (23) we have neglected terms of order 2, it is clear 
that allowing the amplitudes to increase much beyond half the initial radius of the jet 
is likely to introduce significant errors. At least as important is the inherent limitation 
of any one-dimensional model in which radial momentum effects are only partly 
included. Close to the bifurcation point of the jet the surface tension force is inversely 
proportional to the radius of the neck. This implies that prior to the bifurcation the 
necking region experiences a large inward acceleration during which radial momentum 
effects become increasingly important. Including only first-order radial momentum 
effects as we have done, is a severe approximation in that case. 

Further limitations of the one-dimensional model become apparent when we 
consider figures 1 and 2. Namely, the important assumption that the typical axial 
lengthscale is of order R/6  does not hold as the amplitudes of the disturbances increase. 
For example, the calculations for the long-wavelength disturbance in which 6 = 0.1 
(figures la, 2 4  show that as the amplitudes increase, the typical lengthscale of the 
major features is one tenth of a wavelength. This implies that for large amplitudes the 
characteristic axial scale is given by the radius R rather than R/6. 

7. Conclusions 
In this paper we have derived the equations governing the motion of axisymmetric 

long-wavelength disturbances on a liquid jet. It is shown that with a consistent 
perturbation approximation the one-dimensional model presented by Lee (1 974) is 
modified and brought into line with the Cosserat model presented by Green (1976). 

Exact periodic solutions can be obtained for the equations we have derived. 
However, we find that these solutions do not agree with results obtained by others. 
This discrepancy is due to the fact that periodic solutions only exist for a range of 
wavenumbers for which the long-wavelength approximation is not applicable. 

Numerical solutions of the nonlinear equations are presented for the case of long- 
wavelength disturbances which are known to be unstable. A classification of the 
evolution of long-wavelength disturbances on a jet is possible. Disturbances with a 
wavenumber less than 6 = 0.7 typically show a rapid increase in the amplitudes of the 
swells while the region between the swells remains fairly flat until close to the 
bifurcation point. As the bifurcation point is approached, two necks start to develop 
at the ends of the flat region adjacent to the swells. The length of the flat region between 
the swells increases with increasing wavelength. Necks and swells of disturbances with 
a wavenumber in the range 0.7 < 6 < 1 grow at more or less equal rates: there is no 
flat region between the swells. Only when the bifurcation point is approached do we find 
that growth rates of the swells and the necks start to differ significantly. The neck 
region becomes flat and two separate necks start to develop. A consequence of this 
behaviour is that satellite droplets will always be formed. The volume of the satellite 
drop increases with increasing wavelength. 

The applicability of the one-dimensional approach we have discussed in this paper 
is limited by a number of different factors. First of all there is the inherent limitation 
of the long-wavelength approximation in describing the dynamics of disturbances with 
a wavelength less than the circumference of the jet. However, even for long waves the 
long-wavelength approximation fails when the amplitudes of disturbances has grown 
close to the initial radius of the jet. This failure is due to the increasing importance of 
the radial momentum effects when the radius of the neck decreases. In addition we find 
that as the wavelength of disturbances increases, the disturbances become increasingly 
localized for growing amplitudes. In fact, for large amplitudes the typical axial scale of 
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the main features is of the order of the radius of the jet. Hence, the crucial assumption 
that the axial lengthscale is of the order of the radius of the jet divided by the 
wavenumber no longer holds when amplitudes have increased significantly. 

The author is indebted to one of the referees for pointing out errors in the original 
manuscript. This research was financed by the Commission of European Communities 
under contract number B/SCl-900617. 
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